Outlier detection for multivariate categorical data
نویسندگان
چکیده
منابع مشابه
Outlier Detection in Multivariate Data
The objective of this research is detection of outliers in multivariate data employing various distance measure, particularly using robust regression diagnosis technique. Several classical outlier identification methods are based on the sample mean and covariance matrix in general. But they do not always yield better result, as they themselves are affected by the outliers. Sometimes one outlier...
متن کاملAn Optimization Model for Outlier Detection in Categorical Data
The task of outlier detection is to find small groups of data objects that are exceptional when compared with rest large amount of data. Detection of such outliers is important for many applications such as fraud detection and customer migration. Most existing methods are designed for numeric data. They will encounter problems with real-life applications that contain categorical data. In this p...
متن کاملMultivariate outlier detection with compositional data
Multivariate outlier detection is usually based on Mahalanobis distances, by plugging in robust estimates of location and covariance. For compositional data, carrying only relative information, a special transformation needs to be consulted in order to be able to work in the appropriate geometry. The effect of the transformation is discussed in this contribution. Furthermore, different possibil...
متن کاملA simple and effective outlier detection algorithm for categorical data
Outlier detection is an important data mining task that has attracted substantial attention within diverse research communities and the areas of application. By now, many techniques have been developed to detect outliers. However, most existing research focus on numerical data. And they can not directly apply to categorical data because of the difficulty of defining a meaningful similarity meas...
متن کاملMultivariate Spatial Outlier Detection
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. Previous work in spatial outlier detection focuses on detecting spatial outliers with a single attribute. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quality and Reliability Engineering International
سال: 2018
ISSN: 0748-8017
DOI: 10.1002/qre.2339